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Abstract

2" MIRACLE Workshop has been organized as a part of MUSCLE
International Workshop on Computational Intelligence for
Multimedia Understanding, 3-4 October 2013, in Dedeman
Antalya Hotel and Convention Center, Antalya Turkey. The
Workshop had 22 presentations, 4 of whom are from MIRACLE
Workshop.

Keywords

Workshop




Introduction

2" MIRACLE Workshop was organized as a part of MUSCLE International Workshop on Computational
Intelligence for Multimedia Understanding, 3-4 October 2013, in Dedeman Antalya Hotel and
Convention Center, Antalya Turkey. Two sessions consisting of four papers and an invited presentation

by Prof. Metin Gurcan of Ohio State University are presented during the Workshop. 28 scientists

attended the meeting as shown in Figure 1.

Figure 1 Audience

Workshop technical program is given below in Table 1.

One of the plenary talks of the MUSCLE meeting was given by Dr. Metin Gurcan with title “Medical
Image Analysis: Visual Decomposition and Modeling”.

The following presented papers will appear in IEEE Xplore. They are also included in this report.

Paper Title

Author Names

Image Acquisition And Detection Of
The Iris For Iridiology

Out-Of-Sample Calibration Approach
For Classification Methods Based On
Spectral Graph Theory

Detection Of Centroblasts In H&E
Stained Images Of Follicular
Lymphoma

Multi-Scale Directional Filtering
Based Method For Follicular
Lymphoma Grading

Petra Perner*, Ibai

Philippe Belhomme*, Pathimage; Simon Toralba, Pathimage;
Benoit Plancoulaine, Pathimage; Myriam Oger, Pathimage-Clcc
Baclesse; Catherine Bor, Pathimage-Clcc Baclesse

Emmanouil Michail, ITI-CERTH; Evgenios Kornaropoulos, ITI-
CERTH; Kosmas Dimitropoulos, ITI-CERTH; Triantafyllia Koletsa,
Aristotle Univ. Of Thessaloniki; Nikos Grammalidis*, ITI-CERTH

Alican Bozkurt*, Bilkent University; Enis Cetin, Bilkent University
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OUT-OF-SAMPLE CALIBRATION APPROACH FOR CLASSIFICATION METHODS
BASED ON SPECTRAL GRAPH THEORY

Belhomme Philippe’, Toralba Simon’, Plancoulaine Benoit', Oger Myriam®, Bor-Angelier Catherine’”

'PATHIMAGE EA 4656, Normandie Université; UNICAEN, CLCC F. Baclesse, Caen, France
*Pathology department, CLCC F. Baclesse, Caen, France

ABSTRACT

Spectral graph theory (SGT) relies on the study of properties
of a graph in relationship to eigenvalues and eigenvectors of
Markov matrices. SGT is commonly used for dimensionality
reduction, machine learning (classification, clustering) but is
very CPU consuming. This is a problem for “out-of-sample”
applications aiming to compare new unknown complex
objets to an already built database. In this paper, we present
a simple method allowmg to get around this problem by
adding to Markov matrices some “spy points” later used to
calibrate the unknown data with a knowledge database. The
spectral graph theory method studied here relies on diffusion
maps. Results obtained on artificial images composed of
texture samples and on virtual slides of follicular
lymphomas are serve to explain the general approach.

Index Terms— Spectral graph theory, manifold
learning, virtual slide images, out-of-sample extension

1. INTRODUCTION

Research 1n signal and image analysis is going on for many
decades now and 1s directly linked with the exceptional
development of computer technologies. But after all these
years, it must be admit that there are not so many real
working applications in practice, especially in the medicine
area where the expert's eye is still more accurate and faster
than many automated systems dealing with large amounts of
data. However, reliable automated systems could really help
pathologists i their daily work as the number of
pathological cases increases as far as the early screening
campaigns do. To illustrate this statement with a medical
case, for example images of histological tissue sections, the
complex structures to be observed, the very large staining
differences encountered with preparations providing from
different laboratories and even from the same one, the image
file size being more and more large for they are now
acquired on digital scanners at higher resolutions (a typical
virtual slide image (VSI) is commonly 50 Gb now), all these
finally assimilate image processing to the analysis of masses
of more or less correlated non-linear data. In some previous
works dedicated to the development of a computer-aided
diagnosis system (CADS) based on image retrieval and

classification [1,2], we have used a method coming from
spectral graph theory, the diffusion maps (DM) [3], to
process VSI split in small parts called 'patches’. The DM
algorithm, in which eigenvalues and eigenvectors of a
Markov matrix defining a random walk on the data are
computed, allows to both cluster non-linear input data
thanks to its mner classification properties preserving local
neighborhood relationships, but also to reduce the mput data
dimensionality i a space (3D concerning this paper) where
it is therefore possible to compute euclidean distances
between the objects to be analyzed [4,5]. To briefly describe
the CADS we are developing, the first step consists in
building a knowledge database involving many features
extracted from a set of well-known images; this is an 'off-
ling  procedure conducted once. These features are
represented by vectors of non-linear data acting as a
signature. In a second step, signatures are obtained from
unknown images and then compared with those in the
database;, this is an 'on-line' procedure that has to be
conducted each time a new image is processed.

The diffusion maps technique belongs to unsupervised
learning algorithms working only for given tramning points
with no straightforward extension for out-of-sample cases.
One of our previous work [6] focused on a way to get
around this problem and explained how unknown VSI may
be classified by considering the diffusion maps as a learning
eigenfunction of a data-dependent kernel. The Nystrom
formula [7] was thus used to estimate the diffusion
coordinates of new data. But even if the Nystrém formula
approach allowed to drastically limit the computational
workload, for the step of eigenvalues and eigenvectors
determination has a O(»®) complexity, the final
dimensionality reduction (DimR) result is unfortunately
constrained by an intrinsic property of DM. Indeed, with the
DM algorithm, the column sum of any eigenvector is always
zero and by the way it is directly impossible to compare the
projections i a 3D space of two different sets of data
points; this 1s what we will call later the “scaling effect”.
Moreover, for a given Markov matrix, the absolute values of
eigenvector coordinates are independent from the data order
(30 the order of rows in the matrix) but their sign do. And as
the software we are developing mainly deals with parallel
computation, the same data set 1s never processed in the



same order twice; this second effect is later called the
“rotation effect”.

In this paper, we propose a simple but efficient approach
allowing to further decrease the computational workload of
the out-of-sample extension of spectral graph theory
methods, while making it easier to compare new data sets
thanks to the use of “spy points™. These “spy points” come
from a first set considered as a reference, then are used to fit
the other sets in the same 3D space by rotation-scaling of
their coordinates. To illustrate our approach in a practical
way, we use data sets of feature vectors obtained from
image patches extracted in large VSI of follicular
lymphomas.

2. MATERIALS

VSI come from histological sections of four different
follicular lymphomas stained in the same laboratory
according to the Hematoxylin-Eosin-Safron protocol.
Images have been acquired by a digital scanner
(ScanScope CS; Aperio Technologies) at 20X with a
resolution of 0.5 um per pixel and stored in TIFF 6.0 file
format (compression 30%). For this study, histological
sections are split in squared areas (also called “patches™) of
size 100x100 pixels. Each area is then extracted at plain
resolution and stored as an uncompressed TIFF image. Tools
developed here are written in Python language with the help
of specialized modules (PIL: Python Imaging Library, SciPy
and mathplotlib).

3. METHODS
3.1. Features extraction

From each patch, statistical parameters based on color and
texture information are computed and embedded in a feature
vector. They are obtained as global measurements from the
RGB color components (reduced to 64 values) and from the
two first compenents (H, E) of the color deconvolution
specific to Hematoxylin and Eosin staming [8]. From any
given component, the computed features include the mean,
median, mode, Skewness and Kurtosis values, the 20%-
40%-60%-80% quantiles of its cumulated histogram and
13 Haralick parameters of texture in four directions, that is a
total of F=305 features (61 %5) per patch. Considering the
sparse numerical range of extracted features, the symmetric
Kullback-Leibler distance has been retained for its ability to
easily manage such values, while remaining fast to
implement. The distance between two vectors p.p; of
length F is then given by:

F
1 pr pzj
D (p P )=—Z P log|—Ll4p log (1.
KVTLT2) ol ?;

3.2. Dimensionality reduction (DimR)

In any classical CADS, one of the key components is a
visualization tool showing relationships between supervised
images, stored in a knowledge database, and new images
that are presented to the system. Typically, these relations
may be expressed as a connected graph m a 3D space where
one hopes to find distinctive clusters corresponding to
histological types or sub-types. It is therefore mandatory to
reduce dimensionality from F (F=305 in our application) to
just 3. With feature vectors containing non linear data, it 1s
not appropriate to perform a principal component analysis
(PCA). In papers [3,4] authors have shown that methods
based on Spectral Connectivity Analysis (SCA) such as
diffusion maps, involving eigenvalues and eigenvectors of a
normalized graph Laplacian, are well suited to non linear
data. Let X={x,x;,...x,} be a set of npatches that we
assimilate to a fully connected graph G, that means a
distance function 18 computed for each pair {x.x}. A n<n
kermnel P is obtained from a Gaussian function whose
coefficients are given by:

p(x,.,xf—wi]:}f)
with d(xi)= Z w(xi,xk) 3)
x5 EX
D x_,x_)
|kl
and w ( x, ,xj) =e ‘ (4).

In fact, p(x;.x;) may be considered as the transition kernel of
the Markov chain on G. In other words, p(x.x;) defines the
transition probability for going from x; to x; in one time step.
The eigenvectors ¢, of P, ordered by decreasing positive
eigenvalues, give the practical observation space axes. It
must be noticed that ¢, is never used since linked to the
eigenvalue A=1 (i.e. the data set mean or trivial solution).
The 3D projection is then achieved along (@1,2p:).
Choosing & m w(x,x;) 15 an empirical task which should
permit a moderate decrease of the exponential in
equation (4); some works [4] use the median value of all
Dirlx,x;) distances whereas other works [5] use the mean
distance obtained in the knearest neighbors from a subset
of X. We have retained the first solution.
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3.3. Out-of-sample extension

3.3.1. Nystrom formula
SCA techniques share one major characteristic that is to
compute the spectrum of a positive definite kernel. Tt is
known that the eigenvalue decomposition of a matrix
P € IR can be computed no faster than O(#n’); this limits
SCA techniques to moderately sized problems [9].
Fortunately the Nystrom extension, originally applied for
finding numerical solutions of integral equations, can be
used to compute eigenvectors and eigenvalues of a sub-
matrix formed by m columns of P randomly subsampled and
then extended to the remaining n-m columns [7]. Given an
nxn matrix P and an integer m<n. Let call P® the matrix
formed by m columns of P that is the graph Laplacian of a
set YcX with |F]=m. Y is then a training set The
orthonormal matrix of eigenvectors L% and their associated
eigenvalues in a diagonal matrix A® are classically
obtained from P™ by solving: PXU=A"{U"_ This step
has to be run once and then may be considered as an 'off-
line' procedure. The Nystrém formula allows to obtain the
approximate eigenvectors of all the set X by:

=2 Lp s

E n i[m] NM i

r
where A" and u® are the i diagonal entry and i column
of A® and U™ respectively. Py is a nxm sub-matrix of the

complete graph obtained from distances w(x.x). Its
computation 1s an ‘'on-line' procedure having to be
conducted for each new test set (X\Y). For a

3D visualization, the second to fourth columns are used (the
first one being the trivial solution).

3.3.2. “Linear Spy Points™ (LSP) approach

The DimR procedure achieved thanks to the diffusion maps
yields to a set of data points where the column sum of each
eigenvector 1s necessarily equal to 0. Therefore, each new
test run provides a set of coordinates that cannot be
compared to a previous computation. The approach explored
in this “linear spy points” section consists in simply run
each test with a set of 3 data points further used as a
reference. In the original 3D space &, 3spy points
corresponding to 3 patch images are selected and expressed
by AN Ya,24), B(X3,Y5,25) and C(Xe, ¥, Zo). Then, for each
new test run, these 3 patches are first added in the directory
where the other 'unknown' patches stand and the DimR
procedure 1s processed. The 3 spy pomnts become A'.B,C'
and are now expressed by A'(xayaz.), B'(reyezs) and
C'(xe,y0,20) in the new space &". If we assess that going from
A'B,C' to A,B,C 1s just a linear transform, thus any pomt i
& will be expressed from its corresponding element in &" by
a linear vectorial expression as in equation (6).

By using AB,C and A'B,C' coordinates m (6), the nine
matrix elements are easily found by resolving the nine
independent linear equations, thus providing the
trans formation matrix M between &" and &

a b ¢
X X X X X
= b - 6)
¥ ﬂy ¥y Cy Y
z a b ¢ |IF

4. RESULTS AND DISCUSSION
4.1. Nystrom formula

As the DM method preserves the local proximity between
data points, DM+ Nystrom thus allow to compare a new data
set of size n-m with a knowledge database of size m.
Fundamentally, this is not a real calibration process since the
n total points are embedded in a 3D space which is different
from both the space where the m points and the n-m points
were obtained. Moreover, the space properties depend on m.
Fig. 1 shows the Nystrém extension for #-m=1000 patches
applied on m=1000 references, compared with the raw
computation on the 2000 patches (patches come from breast
cancer images from the study cited in [6]). Fig. 2 shows the
same approach with 7-m=1500 points and m=500. In the
second case, it may be noticed that the red pomt cloud keeps
quite the same shape than the black point cloud but is
located much more far away from it than with m=1000.

4.2, “Linear Spy Points” approach

In order to test if a linear transformation matrix may be used
with DM, an artificial image I composed of texture samples
coming from the Brodatz database [XX] has been created.
At the begirming,  is processed as a whole and 3 spy pomts
are randomly selected under a constraint on a minimal
euclidean distance between them in the 3D reference space
&nr I is then split in 2 equal parts (f; and I;) which are
processed independently but with the set of spies, so
projected in 2 different 3D spaces & and &. Once the linear
transformation matrices are computed and applied on all
data points, & and & are supposed to match &, To better
represent this approach, spaces &, &' and &.; with their
own orthonormal coordinate system  (gi,ops) are
assimilated to RGB color cubes in which each point is
associated with a false color. A reliable calibration process
would be encountered if the two half colormaps obtain on
1,1, really match the colormap of I.
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Figure 1: 2000 true eigenvectors coordinates (black dots) vs
estimated coordinates obtained from 1000 points (red dots).

Figure 2: 2000 true eigenvectors coordinates (black dots) vs
estimated coordinates obtained from 500 points (red dots).

Figure 3 shows the main steps of the ZSP approach. Starting
from the original image /7 (top-middle), 7 is split in 2 parts
(arrows 1) [; and 4. [ is processed as a whole to obtain its
colormap Chy in &y (arrow 2). /; and I, are independently
processed (arrows 4) and their corresponding colormaps C';
and C; are respectively obtained in &; and &, The LSP
approach is applied to match & ; with & and & 2 with &y
(arrows 5). The 2 colormaps are combined (arrows 6) and
Cryp 18 compared to the C; (arrows 7). With an artificial
image such as the one we used here, the LSP approach
yields to a final colormap Cj+; that is visually close to the
reference C,. The mean value of all color differences
between Cj+ and Ciy is about 6%, with a maximal value of
21%.

Figure 3: Linear spy point procedure to calibrate 2 data sets
successively computed in a dimensionality reduction
scheme by the diffusion maps.

Not finished yet for follicular lymphomas (FL)... The
paper length needs also to be reduced to add results and
images for FL.

5. CONCLUSION

The linear spy point approach exposed in this paper is a first
answer to the problem of out-of-sample extension
encountered with dimensionality reduction methods such as
the diffusion maps. Unfortunately, for non-linear input data,
it cannot be a real solution. The next way that will be
explored is to work on a non-linear spy point approach
taking into account much more spy points whose
coordinates come from the Nystrém formula.
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MULTI-SCALE DIRECTIONAL FILTERING BASED METHOD FOR FOLLICULAR
LYMPHOMA GRADING

Alican Bozkurt, A. Enis Cetin

Bilkent University
Department of Electrical and Eletronics Engineering
TR-06800, Bilkent, Ankara, Turkey

ABSTRACT

Follicular Lymphoma(FL} is a group of malignancies of lym-
phocyte origin that arise from lvmph nodes, spleen, and bone
marrow in the lymphatic system in most cases and is the sec-
ond most common non-Hodgkins lymphoma. Characteristic
of FL is the presence of follicle center B cells consisting of
centrocytes and centroblasts. One common way of grade FL.
images is an expert manually counting the centroblasts in an
image, which is time consuming. In this paper we present a
novel multi-scale directional filtering scheme, and utilize it to
classify FL images into differnet grades. Instead of counting
the centroblasts individually, we classify the texture formed
by centroblasts. We apply our multiscale-directional filtering
scheme in 2 scales and along 8 orientations; and use mean
and standard deviation of each filter output as features. For
classification, we use support vector machines with radial ba-
sis function kernel. We map the features into two dimen-
sions using linear discriminant analysis prior to classification.
‘When SVM parameters are optimized, this method achieves
100,0% 10-fold cross validation accuracy on a 270-image
dataset.

Index Terms— One, two, three, four, five

1. INTRODUCTION

Follicular Lymphoma(FL} is a group of malignancies of lym-
phocyte origin that arise from lymph nodes, spleen, and bone
marrow in the lymphatic system in most cases and is the sec-
ond most common non-Hodgkins lymphoma [1]. Character-
istic of FL is the presence of a follicular or nodular pattern
of growth presented by follicle center B cells consisting of
centrocytes and centroblasts. World Health Organization’s
(WHO) histological grading process of FL depends on the
number of centroblasts counted within representative folli-
cles, resulting in three grades with increasing severity [2]:

Grade 1 0-5 centroblasts(CBs) per high-power field (HPF)
Grade 2 6-15 centroblasts per HPF
Grade 3 More than 15 centroblasts per HPF

Therefore, accurate grading of follicular lymphoma im-
ages is of course essential to the optimal choice of treatment.
One commen way of grade FL images is an expert manually
counting the centroblasts in an image, which is time consum-
ing. Recently. Suhre proposed 2-level classification tree using
sparsity-smoothed Bayesian classifier, and reported very high
accuracies [3].

The dataset provided by [3] is also used in this paper. The
dataset consists of 90 images for each of 3 grades of Follicular
Lymphoma. In Follicular Lymphoma Grading problem, we
aim to grade microscope images according to their centroblast
counts. Instead of counting the centroblasts individually, we
try to classify the texture formed by centroblasts.

2. DIRECTIONAL FILTERING FRAMEWORK

Directional filtering is a new framework developed in this pa-
per. In this framework, we start with a given filter impulse
response fg with filter length N in one-dimension (1D) and
we wish to use fp to filter images in various directions. To do
50, we propose to create a set of filters obtained by rotating fo
along a set of angles parameterized by 6.

Instead of rotating fy by bilinear (or cubic) interpolation,
we use the following method: For a specific angle 8, we draw
a line { going through origin (! : ¥ = tan@z) and determine
the coefficients of the rotated filter f4(z, §) proportional to the
length of the line segment within each pixel (¢, 7), which is
denoted by |I; ;|. For odd N, f5(0) is exactly the center of
rotation, therefore value of fo(0) does not change in f5 (0, 0).
Therefore we take line segment in origin pixel |l o| as refer-
ence {| F'G| in Figure 1(b)). For 6 < 45°, |lgo| = L5, as-
suming each pixel is of unit side. For each pixel in column j in
the grid, we calenlate the fo(2,7) as fo(é,7) = fo(i) x ‘%OL“
This approach is also used in computerized tomography [4].

Calculating the line segment |I; ;| is straightforward. To
rotate the filter for # < 45° (which corresponds to N, < 1),
we place fo to the vertical center of a N x N grid, where
Cx (4, 7) and Cy (2, 7) are the coordinates of the center of cell
with horizontal index ¢ = 0,..., N — 1, and vertical index
7 =0,...,N — 1. Then we construct a line [ along the de-
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sired direction where the bisector of the line is the exact cen-
ter of the grid (which is also the center of filter). For every
cell of the grid, we calculate the rotated filter coefficients as
: fali,9) = fali ) x max(0, 1 = Cli5) + (0,6, 9). To
rotate the filter for & > 45° we first rotate the filter 80° — &
then transpose fop-_p to get fy. Note that this method of
rotation retains the DC response of the original filter, since

3o fe(50) =50 folR)

(a) fol#,4)

D005 ¢ OGS 1 AR 4 000k
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1 Bl I;.“:':;..: nlmn‘n- 1 amis| o oomz
[ m ?f',;‘m: ] namz| 1 |aak2

o oo B O

e afen
K] 3
-8 = L a 1 z 3 -3 -2 -1 L] 1 a 2

(¢) Lengths of line segmeants in 2ach pixel (d) Resulting o655+

Fig. 1. Filter rotation process for Lagrange & srous filter

This method imposes a lower bound on &, since at the line
should cross at least one pixel other than original pixels of fo.
Assuming (4, 5) = ¢ and pixels have side [, this bound is
calculated as follows:

tan(ﬁ)[Gw(¥,O)+i/2] > % 1
1

w0 e

tn(®) 2 @)

g = arctan(%) 4

Resulting filters form a directional filter bank are shown
in the first row of Table 1. These directional filters are used
in a multi-resolution framework for feature extraction. For
the first scale, directional images can be extracted by con-
volving the input image with this filter bank. Mean and
standard of these directional images are vsed as the direc-
tional feature values of the image (other statistics, or the

(by Line § = arctan 1/2 = 26 565°
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image itself can also be used). To obtain direction feature
values at lower scales, the original image is low-pass filtered
and decimated by a factor of two horizontally and vertically
and a low-low sub-image is obtained. Since downsampling
is a shift variant process, we also introduce a half-sample
delay before downsampling. To implement this, we down-
sample two shifted versions of input image (corresponding
to (Ax, Ay) = {(0,0), (1, 1)}, pass two downsampled im-
ages from our directional filter bank, and fuse the cutputs
to construct one output image per filter in directional filter
bank. Fusing method used in thesis is simply taking square
of images, summing them, and taking the square root of the
sum.

A variant of this multi-scale filtering framework vses four
shifted versions instead of two (corresponding to (Ax, Ay) =
{(0,00,(1,0), (0,13, (1,1)}). Although this increases the ac-
curacy by average 1%, it also doubles the computational com-
plexity. This speed vs. accuracy trade-off should be evaluated
for potential applications.

The lowpass filter used in downsampling fy can be the
corresponding lowpass filter of a wavelet filter bank. If fo
is chosen as such, or it can be a simple half-band filter. The
low-low sub-image can be filtered by directional filters to ob-
tain the second level directional subimages and correspond-
ing feature values. This process can be repeated several times
depending on the nature of input images. The filtering flow
diagram is shown in Figure 3.

In our experiments we use directional filters in 3 scales,
8 = {0°,4+26.56°, +45° +63.43°,90°} and lowpass filter
is halfband filter f; = [0.25 0.5 0.25]. For filter bank we
vse Kingsburys 8tk order g-shift analysis filter [5]: fy =
[-0.08080 0.4155 — 05376 0.1653 0.0624 0 — 0.0248]
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(a) Directional Filter (# = 0°) (b) Rotational Filter (¢ = 0°)

() Directional Filter (# = 63°) {f) Rotational Filter (& = 63°)

Fig. 2. Frequency Rasponses of directional and rotated filters
at various orientations.

3. FEATURE EXTRACTION AND CLASSIFICATION

Since images in this dataset are of relatively uniform texture,
there is no need to segment the images prior to feature ex-
traction. Also, It is not possible to have 2 different grades of
Iymphoma in an image, so we give one decision per image.
We take take input image and feed it to feature extraction al-
gorithms directly after converting to grayscale. After feature
extraction, we experiment with dimension reduction. Each
feature is classified once without any dimension reduction,
once after principal component analysis (PCA) [6], and once
after linear discriminant analysis (LDA} [7]. For PCA, dimen-
sion is reducad keeping the 99.9% of the cumulative energies
of eigenvalues, For LDA, since the maximum number of di-
mensions is bounded by the number of classes, dimension is
reduced to 2D for each feature.

By definition, all multi-dimensional directional feature
extraction algorithms output features as a filter response
for each scale-direction pair. These filter outputs cannot
be used directly as features because they are variant to size
of input window, scale, small perturbations in input image
such as translation or rotation. In order to make the fea-
ture more standardized and more robust to these factors, we

Fig. 3. Image flowchart directional filtering framework

use mean and standard deviation of filter outputs for each
scale-direction pair. If we use filter outputs of a 3-scale
and 6-directional featura extraction algorithm directly, we
cannot say anything about the size of our feature vector: it
depends on the size of input image. Also, even if we assume
the input is just 24 x 24 pixels, the feature size would be
B 24 %24 +6x12x 12 +6x 6 x 6 = 42552, which is
too large to classify efficiently. If we vse mean and standard
deviation of filter outputs for the same algorithm, we easily
see that the feature size is 2 x 3 x 6 = 36 regardless of the
input. Then we classify the extracted features using Support
Vector Machines (SVM) with Radial Basis Function (RBF)
as kernel function. The accuracy of the systam, as mentioned
before, is measured by 10-fold cross validation, which is a
very standard method for measuring the accuracy of classifi-
cation in the literature. In order to find optimal accuracy, we
perform a parameter search for C and + parameters of SVM
using simple heuristics.

4. RESULTS

‘We compare the proposed features with varions multi-scale
directional feature extraction algorithms, such as curvelets
[8], contourlets [9], steerable pyramids [10], complex wavelets
[11], Gabor filters [12], texton filterbanks [13, 14, 15],and
Gray-level co-occurrence matrices [16]. We also compars
our results with state of the art [3].

Furthermore, we also performed tasts to measure the com-
putational complexity of algorithms. These tests are done on
a computer with Intel i7-4700M(Q CPU and 16 GB memory.
Values presented in Table 3 are average times over 10 runs.
Tt is clear that directional filters are the most efficient among
tested algorithms.

5. CONCLUSION

A method for grading follicular lymphoma images, based on
a novel multi-scale directional feature extraction framework
is proposed. In this framework we draw a line ! going through
origin (I : » = tan fx) for a specific angle #, and determine
the ceefficients of the rotated filter f5(4, ) proportional to
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Table 2. 10-fold cross-validation accuracies of each grade,
for each feature

Grades

Feature Dimension Reduction e T Crade T Grada3 Mean
LDA 100.00 98.88 100,00  99.63

CWT PCA 76.67 76.40 70,00 7436
None 96.67 98.88 98.89  98.14

LDA 9889 10000 100.00 99.63

LM PCA 80.00 92.13 90.00 8738
None 95.56 93.26 10000 9627

LDA 95.56 9438 100,00  96.65

MRS PCA 63.36 73.03 90.00  76.20
None 97.7% 92.13 98.80  96.27

LDA 100.00 8.99 10000 69.66

Contourlet PCA 8222 82.02 84.44  82.90
None 87.78 88.76 10000 9218

LDA 95.56 449 100,00 6668

Curvelet PCA 78.89 93.26 98.89  90.35
None §4.44 96.63 98.80 9332

LDA 10000  100.00  100.00 100.00

Dir. Fil PCA 7111 80.90 85.56  79.19
None 97.78 97.75 98.89  98.14

LDA 0.00 000 100,00 3333

Gabor PCA §3.33 86.52 90.00  86.62
None §6.67 §0.80 95.56 9070

LDA §3.89 §8.76 86.67 8811

GLCM PCA 2222 34.83 47.78 3494
None 85.56 86.52 85.56  85.88

LDA 98.89 98.88  100.00  99.26

Pyramid PCA 71.11 94.38 67.78 7776
None 96.67 94.38 98.89  06.65

31 None 98.89 98.89 10000  99.26

the length of the line segment within each pixel (¢, j). This
new multi-scale directional framework is compared with a
number of multi-scale directional image representation meth-
ods including the complex wavelet transforms, curvelets,
contourlets, gray level co-occurrence matrices, Gabor filters,
steerable pyramids, and texton filter barnks.

In terms of computational efficiency, directional filter
banks are the fastest among all tested methods, extracting
features from a 512 x 512 image in 8 directions and three
scales in 0.032 seconds.

When features extracted with proposed method are re-
duced to 2D using linear discriminant analysis, a SVM clas-
sifier with optimum parameters achieves 100% 10-fold cross-
validation accuracy, surpassing other multi-scale directional
feature extraction algorithms and state of art.

Table 3. Time required for each feature to be extracted from
a N x N image, for N = [512,1024, 2048]
Required time per N x N sample (s)

Feature

N=512 N=1024 N=2048
CWT 0.0615 0.277 1.2129
Curvelet 0.1863  0.7188 3.3451
Contourlet  0.178 0.6051 2.5417
GLCM  0.3643  1.6249 6.6018
Gabor  0.9655 39268 16.1438
Pyramid 0.2714  1.4155 6.1437
Dir. Fil.  0.0323  0.1343 0.5447
MR8 0.2083  0.8757 3.4984
LM 21083 7.2679 32.69
RFS 1.6273 58382 25.7325
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ABSTRACT

The iris of a human 1s not only relevant for biometry, it is
also relevant for the prediction and diagnosis of human
health. One understands by iris diagnosis (Iridology) the
investigation and analysis of the colored part of the eye, the
iris, to discover factors which play an important role for the
prevention and treatment of illnesses. Up-to-date the iris
diagnosis is done manually and is concerned with the know
problems, objectivities and reproducibility. An automatic
system would pave the way for much wider use of the iris
diagnosis for the diagnosis of ill-nesses and for the purpose
of individual health protection. In this paper we describe the
state-of-the-art of the Iridology. Different ways of image
acquisition and image preprocessing are explained. We
describe the image analysis method for the detection of the
iris. This method is based on our novel case-based object
recognition and case mining method.

Index Terms— Iris diagnosis, biometry, recognition
method, image acquisition

1. INTRODUCTION

The iris of a human is not only relevant for biometry; it is
also relevant for the predic-tion and diagnosis of the health
of a human. The later 1s called iris diagnosis.

One understands by iris diagnosis (Iridology) [1] the
investigation and analysis of the colored part of the eye, the
ir1s, to discover factors which play an important role for the
prevention and treatment of illnesses, but also for the
preservation of an optimum health [2-4].

One of the advantages of the iris diagnosis consists in the
fact that it is able to provide a lot about the state of the
health of a person. An iris picture can pomt out a health
problem. For example, the fact that more than only one
single organ is concerned or that the problem also has an
emotional or mental component. Thus one can discuss much
better with a patient who must decide between different
possibilities of treatment much better or initiate preventive
measures before the illness comes to the outbreak.

The iris diagnosis has set up in many countries a
complementary-medicine discipline [5-8] . Thanks to her

special qualities the iris diagnosis is able to cross some
borders which have been established in the last decades with
the heavyweight on ,evidence-based medicine” mn the
medical science. The iris diagnosis is an easy diagnostic
method that gets by without big apparatus expenditure and
the costs linked with it. Tt gives to general doctors and also
other holistically working therapists a secured diagnosis
mstrument m the hand.

The 1iris diagnostic 1s one of few disciplines which pull
up the eye for the diagnosis position. Ophthalmologists
already know this; they judge the ocular inside around
illnesses to ascertain. Besides, they know some illness signs
with which the iris diag-nosis works and they are of use
already.

In addition, there are mvestigations with the help of the
irises to derive the constitutional type namely the basic
disposition of the individual as well as his personality
picture. This constitution decides on it for which problems
and illnesses an individual is especially susceptible.
Moreover, the preserved mformation about the personality
type can be pulled up for the composition of teams.

The aim of the project is to develop an automatic iris

image acquisition and diagnosis system. The development of
algorithms and procedures for the analysis of the structure
inside the iris, the color information and the patterns on the
irises that can be automatically used together with the
expert's knowledge on illness pictures.
The image acquisition and the preprocessing is describe in
Section 2. The case-based object recognition method is
described i Section 3. Results on the image acquisition, the
preprocessing, and the recognition of the iris are given in
Section 4. Fmally, we give conclusions in Section 5.

2. IMAGE ACQUISITION

The aim of this work was to develop an easy useable
image acquisition unit that allows a person to inspect his iris
by himself.

To understand the conditions necessary for iris image
acquisition, we first started with the normal microscopic
setting of the ophthalmologist. This image acquisition unit
consists of an ophthalmologist microscope with a special
locking of the head, a white lamp and a digital camera
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CANON AS 710. The magnification of the lens iz 450 x=.
The light is irradiated into the eye with an angle of 45grad.
Note, the eye ball is a moving objects therefore it is not
possible to position the light reflex point into a certain part
object of the eye.

The image has been taken by a human after having found
the right focus level and a sharp image. The resulting digital
images are shown in Figure la-b.

Tt is a single shot image not a movie. Such an image
acquisition unit cannot be used by human by himself.

Fig. 1b The rectangular cut
out of the image in Fig. 1a

Fig. 1a The image cut out of

the microscope

The second choice was a handheld microscope with a
ring of four white light lamps and a 400x magnification. The
microscope was equipped with a gum eye mus-cle infront of
the microzcope to ensure safety image acquisition for the
person, no foreign light irradiation and a defined irnage
acquisition distance to the object. There iz still a manual
focus. A sequence of images is taken and the best images of
this sequence are cut out for further evaluation. Some
sample images of three different subjects are shown in Fig.
2a-c.

Fig. 2b Iris of
Subject2

Fig 2alris of
Subject]

Fig. 2c Insof
Subject3

The irig is never fully centered in the image. Sometimes we
get only part of the iris. Sometimes we have the lid in the
image and sormetimes not. That is because we cannot lock
the eye in front of the camera. The light reflection peints are
a bit annovingly. However, that are white spots in the image
and they can easily be removed. Unfortunately the area
under the white spots is not useable for diagnosis anymore.
The setting of the light reflection points into the pupil would
be much more preferable but since the eye is moving it is
almost impossible unless the observer is waiting for the time
were the light reflection points are perfectly located inside
the pupil.

3. DETECTION OF THE IRIS BY CASE-BASED
OBJECT RECOGNITION

We first need to find a reference point in the image. Our

reference point is the pupil of the eye. From the center of the
pupil we set out a circular model and match this model
against the image contours. Where the image points give the
best fit with the model is the boundary of the iris located.
Based on the color we can judge how much area the iris will
cover in the image. The iris iz colored while the surrounding
is white or skin-type color.
The model can be a general model such as a circle or
different types of models taken from different example
images such as described in [10]. We choose the later
approach and use case-based object recognition [9] [11] for
the detection of the iris.

3.1. CASE-BASED OBJECT RECOGNITION

The heart of our case-based object recognition system is a
case base of shapes. These shapes are represented as contour
chaing. Therefore a case is comprised of a set of contour
Points §, {gc (oo yo il ¢ et n} where each contour point has
the grey value 1 and a class label for the shape. Based on
this information we can transform the shape from the
contour point list into a 2-D image matrix, further called
case image. The case base is filled up for the actual
application by shapes that we learnt bazed on our novel case
acquisition and case mining method [10]. An index over the
case base should allow us to find the closest case among the
numerous cases in short time. A case image iz matched
against the image by constructing an image pyramid from
the actual image and the case image. This allows us to
reduce the computation tire while matching,

Evaluation . Final Nod st
o ey Y g SN

: T

Figure 3. Architectur e of a Case-Based Object Recognition
System

Beginning with the highest level of the image pyramid the
scores are calculated and the areas of interest are marked.
The area of interest iz the area where an object can be
detected. This area is recursively used for further matching
by going downward the levels of the image pyramid. Finally
the closest match is given to the output. Depending on the
actual value of the similarity measure the next level of the
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index structure is selected and the process repeats until a
final node is reached. The architecture of our case-based
object recognition system is shown in Figure 3.

3.2. Case Representation

In general, we can distinguish between three different case
representations according to the pixels that are used for
matching:

1. Region of Interest (ROI): A region of interest ROI 1s
obtained by taking a cut-out from the original image.
All pixels of the obtained mmage matrix are used as case
pixels regardless if they are object or background
pixels.

2. Object Case: In the image matrix shown in Figure 2b
are only used those pixels as case points that lie inside
and at the contour of the object. In this case the shape
and the inner structure of the object are taken into
consideration.

3. Contour Case: Only pixels that lie on the contour of an
object are taken as case points. Thus only the shape of
the object of interest is matched.

The kind of representation used for the cases depends on the
special image quality the matcher should detect. Our goal is
to recognize the fungi spores. To use an object case would
not be sufficient for our application since the appearance of
the structure inside the objects is very diverse and because
of that it would result in a case base where for each case 1s
stored an object. The only representation that gives us a
more generalized view to the objects is the shape. Therefore
we use a contour case as case representation.

Note that an object might appear in an image with
different size and under a different rotation angle and on
various locations in an image. But it is still the same object.
It makes no sense to store all these identical but different
sized and rotated objects in the case base. Rather there
should be stored a unit object with the origin coordinates x0
and y(Q that can be translated, resized and rotated durng the

_ T
matching process. Therefore the case pixels P = (t’“’“k)
_ T
and the direction vectors %~ (V’ W) have to be
transformed with a matnx A to:
pi=Ap
m, = A m, (M

If ¢ denotes the angle of rotation and r the scaling factor the
matrix may look like the following;

o G| [reosp - rsing
a1 Gy

A=

FSing  Fcosp

] @

Subheadings should appear in lower case (initial word
capitalized) in boldface. They should start at the left margin
on a separate line.

3.3. Image Representation

Since we are looking for the contour of the object which 1s
the boundary between the background and the object and
which is usually an area of high grey level chance we are
representing the image by the edges. The edges can be
represented by the gradient of the pixels. In order to
determine the gradient, first the direction vector of a pixel
at the position 1s calculated from the grey level matrix. The
direction vector indicates the change of the grey value in
vertical and horizontal direction respectively. The length of
this vector 18 equal to the gradient and it is commonly
determined from the direction vector through the following
formula:
|

2] = Vb4 (857 3)

Due to the discreteness of the grey level matrix which
represents the grey value function only in some well-chosen
points, the direction vectors carmot be calculated by the
known analytic derivation formula. Therefore many
operators were developed that allow us to determine the
direction vectors from the grey level matrix. We used the
Sobel operator. The corresponding edge image is obtained
by applying such an operator to the grey level image. After
that the pixels represent the gradient instead of the grey level
value. Besides that the direction vectors for each pixel are
stored. This representation 1s calculated for the case and the
actual image before the matching.

3.4. Similarity Measure based on the Dot Product.

As we have pointed out above the calculation of the
Hausdorff distance is more costly than the calculation of the
cross correlation. While we have to search for
correspondences between case and image pixels in case of
using the Hausdorff distance, we evaluate the image pixels
that coincidence with the case pixels by using the cross
correlation. On the other hand we are interested in matching
oriented edge pixels which Olson and Huttenlocher [15]
described for the Hausdorff distance. Therefore we propose
a similarity measure based on the cross correlation and by
using the direction vectors of an image. This approach
requires the calculation of the dot product between each

T
recti m, = |\v.,w
direction vector of the case 3 (k’ k)

i = (dkSe}c)T:

and the

corresponding image vector

1¢ = 7 1d 7 Ty 1¢
S = Z,l’"k lk:;;:1<mk3lk>:;§ ("k korwlc'elc)

n 1
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)
with &= 1...,n case pixels.

The similarity measure of Equation (4) is influenced by the
length of the vector. That means that s1 is influenced by the
contrast in the image and the case. In order to remove the
contrast, the direction vectors are normalized to the length
one by dividing them through their gradient:

1¢ moin  1¢ vodo+twoe

b e ez e
In this respect the similarity measure differs from the
normalized cross correlation (NCC). The NCC normalizes
each pixel value by the expected mean of all values of the
considered pixels. Therefore the normalized cross
correlation is sensitive to nonlinear illumination changes
while our method is not because it takes only into account
the angle between two corresponding direction vectors.
The values of s, can range from -1 to 1. If s, is equal to one
then all vectors in the case and the corresponding image
vectors have the same direction . If s; is equal to -1 then all
the image vectors have exactly opposite directions as the
case vectors. That means that only the contrast between the
case and the image is changed . T

The above described global contrast changes can be
excluded by computing the absolute value of s2:

S, =

©))

n i
1 my e

N R = PR A ©

However in case half of the vectors have the same contrast
and the other half have the opposite contrast than the
similarity based on s3 is zero. That might not be preferable
for cases where objects are touching. To avoid this we
calculate the similarity based on s4:

1& |mk-i,J

R

4. Results

The original images (see Fig. 4a-c) are transformed into a
grey level image. The thresholded image used to find the
pupil and the center of mass inside the pupil is shown in Fig.
5 a-c for three subjects. Around the center of mass is set the
model and then object detection is started. The edge filtered
image by Sobel-phase operator is shown in Fig. 6 a-c for the
three subjects. The resulting image after applying the case-
based object matcher is shown in Fig. 7 a-c.

IFig. 4a Ins of

Fig. 4b Iris of

Subject 1 Subject 2

ig. S5a Threshold  [Fig. b Threshold
age mage

IFig. 7a Detected Inis [Fig. 7b Detected Iris [Fig. 7¢ Detected Iris
Area Area Area

Twenty subjects participated in this study. From each of the
subject were taken the iris with the handheld microscope.
Four different models were inserted into the case base of the
case-based matcher ranging from circular to ellipse-like
model. These ellipse-like models are flattened at the bottom
and the top as how it appears on the normal eye. Each of the
images was preprocessed in the same way as the three
images described above.

The iris could be detected by our method in all of the
twenty cases. However, due to occlusion not the full iris
could be seen in the image and part of the detected object
needs to get removed afterwards. Since it is mostly skin and
hair that occlude the iris this removal can be easily done by
the color information.
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5. CONCLUSION

In this paper we have presented our work on image
acquisition, preprocessing and iris recognition for Iridology.
We have used a handheld microscope with a ring of white
lamps and equipped with a gum eye muscle in front of the
microscope to acquire the iris. From the image sequence 1is
take the image that shows most of the wis and is sharp
enough for further analysis. The iris 1s detected with our
case-based object recognition methods usmg different
models from circular to ellipse-like models. We were able to
recognize the wis of our entire subjects with good quality.
Occluded areas could have been taken out based on the
color mformation and they are not used for further
evaluation. Further work will be done for umage
interpretation according to the knowledge of Indology and
further improvement of image acquisition.
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ABSTRACT

This paper presents a complete framework for automatic
detection of malignant cells in microscopic images acquired
from tissue biopsies of follicular lymphoma. After pre-
processing to remove noise and suppress small details,
images are segmented by using intensity thresholding, m
order to detect the cell nuclei. Subsequently, touching cells
are being separated using Expectation Maximization
algorithm. Candidate centroblasts are then selected for
classification by using size, shape and intensity histogram
criteria. Finally, candidates are classified by using a Linear
Discriminant Analysis classifier. The application of the
methodology in a generated dataset of microscopic images,
staned with Hematoxilin and Eosin, showed promising
results by detecting in average 82.58% of the annotated
malignant cells.

Index Terms— Follicular lymphoma detection, H&E
stained images, centroblasts, cell segmentation, touching-
cell splitting

1. INTRODUCTION

Follicular lymphoma (FL) 1s the second most commoen
lymphoma diagnosed in the United States and Western
Europe. It accounts for about 20% of all non-Hodgkin
lymphomas [1] and mainly affects lymph nodes. When the
affected lymph nodes are seen under the microscope, they
show rounded structures called "follicles", which explains
the term ‘follicular’. The neoplastic cells consist of a
mixture of centrocytes which are small- to medium-sized
cells and centroblasts (CBs) which are large cells. The
World Health Organization Classification has adopted
grading from 1 to 3 based on the number of CBs counted per
high power field (HPF) defined as 0.159 mm’: Grade I with
0-5 CBs/HPF, Grade II with 6-15 CBs/HPF and Grade III
with more than 15 CBs/HPF [1].

CB count is performed manually by the pathologist
using an optical microscope and Hematoxiln and Eosin
(H&E) stained tissue sections. An average CB number 1s
calculated over ten random HPFs. Manual histological

grading of FL 1s a time consuming process and requires
considerable effort and extensive traiming. Furthermore,
since this method uses only ten HPFs for CB count, results
for specimens with high tumor heterogeneity are vulnerable
to sampling bias. This may lead to mappropriate climcal
decisions on timing and type of therapy [2]. Hence, there is
a need for a computer assisted method which will improve
reproducibility and reliability of the grading process and
will reduce the time needed for diagnosis.

Computer-aided diagnosis (CAD) has been reported to
be beneficial in classifying tissue subtypes associated with
various grades of FL. The main steps of automatic FL
grading are usually the following. The HPF image is
segmented into its basic cytological components in order to
extract the cell nucler. Segmentation is usually performed
using algorithms like k-means [2, 3], Expectation
Maximization [4], Otsu thresholding, [5], Graph Cuts [6]
etc. In many cases, segmentation algorithms tend to merge
together nucler that are too close to each other. This is
usually referred to as “touching cells”. Several algorithms
have been proposed for touching-cell splitting, like
watershed segmentation [7], radial-symmetry interest points
[8], h-mimma [9], active contours [10], concave points [11],
ellipse/curve fitting [12], and Graph Cuts [13]. The
identified cells are subsequently classified mto CB and non-
CB cells by extracting morphological and topological
features from the cell regions [4], texture features [2, 5], as
well as graph-based features [3]. Principal Compenent
Analysis (PCA) 1s often employed to identify the most
discriminative features.

This paper presents a complete framework for
automatic CB detection in H&E stained images acquired
from tissue biopsies of FL. This framework was developed
to address the special characteristics of the images used in
this paper. Specifically, the images were obtained from 1 to
1.5 pm thick tissue sections. The advantage of the small
thickness of tissue sections is the detailed depiction of the
nuclel (especially the large ones), as seen n Figure 1. Thus,
contrary to microscopic images used in previous studies,
nucleoli in these images are more distinguishable. However,
the disadvantage is that cell segmentation and nuclei
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detectionis becomring difficult, since often their interior has
the sarme color and texture as their extenior,

(a) (b)

Figure 1: Details frora two different HFF images, used for testing
the methodology. CBs are marked with a cimle.

2.METHODOLOGY

The cornplete irage analysis schetne applied in this studyis
illustrated in Figure 2 and consists of fwe main steps; image
preprocessing, irage segmertation, touching-cell splitting,
selection of candidate CBs and classification These steps
ate described in the following subsections.

2.1 Preprocessing

The algorithm wses as input HFF images of FL stained wath
HE&FE. In arder to rernove noise frorn the image and suppress
srrall details, irput images are first conwerted to grayscale
and filtered using a Gaussian filter with a 3x3 kemel
Additionally, in order to facilitate the detection of nucle,
differences between nuclear membrane and backaround are
ethanced, by applying Mstogram equalization to the filtered
image.

Image segmentation
RGH .
image REC datection
Ot=ua Morphol ogical

Pre-processing thresholding operations

| Seledion of cand date CEs |<}:I| Call zplitting

| Oazsification |

Detected Chs
Figure 2: The logical diagrara of the methodology

2.2 Image segimentatinn

There are five major cytological components in the FL
tizsue miclel, cytoplasm, extra-cellular material, red blood
cells: (RBCY and background regions [2]. Mucled and
cytoplasm regons are umally dyed with hues of blue and
purple. However, in cases of large cells, nucled also contain

white commponents, which hinder their detection. Fxtra-
cellular material is dyed with hues of pink and red blood
cells (RBCS) are dyed with hues of red. Inaddition to these
cotrponents, there are also white background regions that do
not correspond to any tissue component.

For the identification and elirmination of EBCs, an RRBC
mask is generated using the following threshold

L (Lot opet L) Trpe

whete  Ing,  Thhe,  lgem. are pixel  intensity  walues
corresponding to red, blue and green channel respectively.
The threshold 15 emnpirically set to 0.37.

After the elimination of BB C pisels, Otsu thresholding
[14] is applied to the remaining pixzels in the grayscale
image in order to segrnent nuclel (dark) from extra-cellular
traterial and background regions (hright).

Ag a post-processing  step, connected component
labelling is used to identify individual objects and an area
threshold (of 10 pixels) is used to remove wvery small
objects.

Due to the transparency of large cells!, their interior
appears hollow after Otsu thresholding Furthemlure, in
some cases, the petimeter of the cells retraing open after
segroentation (open  cells) and a  simple  hole-filling
operation is not able to sufficiertly fill the inner area ofthe
cell. Figure 3 presents a characteristic case of an open cell.
It order to address thiz issue, an addiional post-processing
procedure consisting of three steps 1z applied to each object
i the image, which is illustrated in Figuwre 4. Specifically,
each object iz isclated and subjected to dilation with a
diamond-shaped  structunng  elemert  of mdine =1
Subsecuently, a hole-filling opetation iz applied to the
object and, firally, the object is subjected to erosion with the
satne structuring element. Afer this procedure, the resulting
object replaces the onginal one in the image.

\l‘ ' ™ § “l‘ ]

Dﬁs ’hbﬂ; 1‘51‘: }g
(a) (b} (c)
4‘3 /

0.4

(L

Figure 3: & detail of an HFF image contaning a centroblast: a)
initial irmage, b) grayecale image, o) image after applying Ganssian
filtering, d) after histog rarn equalization, ) after Otsn thresholding.

In the restof the paper nuclei are also reforred to as “cells™
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(c} (d)

Figure 4: Post-processing procedure for open cells: a) the cell is
extracted from the image, b) image dilation, ¢) hole-filling, d)
image erosion.

2.3 Touching-cell splitting

In order to address the issue of touching-cells after
segmentation, a cell-splitting algorithm 1s proposed based on
Gaussian mixture modeling.

Initially, connected component labeling is applied and
all cells larger than a threshold Tcg are used as candidate
touching cells. Tep 1s set to the mimimum size of CBs as
computed from an annotated database, consisting of CBs
and non-CBs (as described in experimental results).

Expectation Maximization (EM) algorithm [15] 1s used
to estimate a) the order of the mixture by using the
minimum description length (MDL) criterion [16] and b) the
parameters of the Gaussian mixture. MDL works by
attempting to find the model order which minimizes the
number of bits that would be required to code both the input
data samples and parameters of the Gaussian mixture. Data
samples consist of the pixels coordinates of each candidate
touching cell; thus only spatial information 1s used. We
observed that, when all the pixels of the cell are provided to
the algorithm, MDL tends to produce a large number of
clusters. Thus, subsampling 1is applied to the pixels
according to their distance from the perimeter. An empirical
threshold is set for this distance corresponding to 65% of the
maximum distance. Only pixels with distance larger than
this threshold are wused as data samples. Despite
subsampling, in some cases MDL still produces ubiquitous
numbers of clusters, with their centers being too close to
each other (e.g. 1 pixel). In order to address this problem,
clusters that are too close to each other are being merged
and the centroid of their centers is used as the center of the
final cluster. The threshold for the merging is empirically set
to 80% of the maximum distance from the perimeter. Figure
5 demonstrates the application of the cell-splitting algorithm
on an object consisting of two touching cells.

2.4 Selection of candidate CBs

At this step candidate CB cells are being selected, based on
their size, shape and intensity histogram. Initially, cells with
area smaller than Tcp are excluded from further processing
steps. Regarding the shape, we used the fact that nuclei of
CB cells are usually round or oval [17], thus cells with
irregular or elongated shape are rejected. For this reason, the
best fitting ellipse is estimated using the Orthogonal

Distance Regression (ODR) algorithm [18]. Two criteria are
used regarding the shape: a) the aspect ratio (major to minor
axis ratio) and ellipse residual (average geometric distance
of the pixels in the perimeter from the ellipse). Two
thresholds were defined based on the annotated CB training
set. The thresholds for aspect ratio and ellipse residual were
set to 2.8 and 1.8 respectively. Cells with values larger than
these thresholds are discarded. In order to exclude some
small dark non-CB cells, the mean value of the grayscale
histogram was computed over the CB training set and a
threshold was set to 135.7. Cells with mean histogram value
smaller than this threshold are excluded. All remaining cells
are provided to the classification step as candidate CBs.

v
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Figure 5 Cell splitting on touching cells: a) initial image, b) image
after segmentation, ¢) the Euclidean distance of each pixel from the
perimeter, d) the most distant pixels from the perimeter, ¢) the
centers of connected cells, as computed by the MDL, f) splitted
cells according to the result of EM.

2.5 Classification

For the classification between CBs and non-CBs, the
annotated database of CBs and non-CBs was used as a
training set. An mxn matrix 4 was defined having as
elements the intensity values of all images of the training
set, where » is the total number of training images (CBs and
non-CBs) and m is the number of pixels in each image (in
our experiments: 71x71).

Pu o Pm

g=| .
P 0 P

Then, in order to remove the redundancy from the
image set, Singular Value Decomposition (SVD) is used.
According to SVD, 4 can be written as:

A:Umw
0

where U is an nwom matrix and V7 is a s matrix,
representing the left and rnght eigenvectors of A
respectively. Moreover, X corresponds to the eigenvalues of
A. The left eigenvectors are an orthogonal basis for the
column space of 4, 1.e. the “image space of CBs and non-
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CBs”. The eigenvector with the highest eigenvalue points to
the highest variance among the images. We assume that the
diseriminative features of CBs/non-CBs will be revealed on
the directions pointing to the lhighest variance among the
images. Therefore, eigenvectors are ordered in a sequence of
descending eigenvalues. The projection of tramning mmages
onto a subspace which spans by only the first few
eigenvectors will well characterize the cells. In our case 47
eigenvectors were used, which was the optimal number as
indicated by the traming results of the classifier.

Each candidate CB in the testing image is subjected to
classification according to the followmg procedure: The
centroid of the cell 1s computed and a 71x71 region of the
initial image is kept around this centroid. The projected
training and testing images are used as nput to a Linear
Discriminant Analysis (LDA) classifier, in order to classify
them into one of two classes (CBs and non-CBs).

In order to compute the optimum number of
eigenvectors, that would reveal the most discriminative
features of CB and non-CB images, we trained the classifier
based on “Hold-out K-folds” cross-validation approach [19].
For this reason, the images of CBs and non-CBs were
randomly divided K times into training (80%) and validation
(20%) set. The training set was further processed in order to
obtain the optimal number of eigenvectors. Specifically,
after examining every number of eigenvectors from 1 to 50,
the optimal number of eigenvectors was selected to be the
smallest one through which the best classification results
were caleulated. After computing the optimal number of
eigenvectors at each of the K iterations, classifier’s accuracy
was validated by using the validation set, and the final
optimal number of eigenvectors was regarded as the one
derived by the iteration that produced the best classification
results. Empirically, K was set to 10.

3. EXPERIMENTAL RESULTS

The methodology described in previous section was tested
on three 40> microscopic HPF images derived from tissue
biopsies of grade II FL, stained with H&E. Images were
acquired at the Pathology Department of Medical School of
Aristotle University of Thessaloniki, Greece. Tissue sections
were sliced at a thickness of 1 to 1.5. They were scanned
using Nikon DNI100 digital network camera and were
mspected by two medical experts, in order to identify the
number of CBs in each image. The average number of CBs
in each image was 10.

In addition, a tramning set containing cropped images of
CBs and non-CBs was generated for the classification
process. Specifically, nine HPF images of FL, stamed with
H&E, were scanned by using the same procedure as for the
testing images. Subsequently, they were examined by
medical experts in order to mark CBs on them. By using
these markings, a set of cropped mnages of CB cells was
created. Each cropped image contains the CB cell at its
center and 1s of size 71x71 pixels. Similarly, a second set of

images of size 71x71 pixels containing only non-CBs was
created. In total, a traming set of 70 images of CBs and 110
images of non-CBs was used.

The overall efficiency of the algorithm was assessed by
comparing CBs that were annotated by doctors with the
detected CBs. 82.58% of the amnotated CBs were
successfully detected on average in the three images. The
disadvantage of the methodology is that it produces a large
number of false positives. Specifically, the average number
of false positives in the three images was 50. Analytical
results are shown in Table L.

TABLE L. IMAGE ANALYSIS RESULTS

Image 1 | Image 2 | Image3 | Average
Annotated CBs 11 8 11 10
Detected CBs 52 55 68 5
True positives | 10 6 9 8,3
False negatives 1 2 2 1.6
False positives 42 49 59 50
Correct 90% 75% 81% 82.52%
detection rate”

* Number of TPs divided by the number of annotated CBs.

The large number of false positives might be partially
explained by the resemblance of certain types of large cells,
like endothelial and dendritic cells to CBs. As already
mentioned, the transparency of large cells poses a problem
on the detection of nuclei, but also provides a better
description of the nuclear area. In this paper the effort was
focused mainly on the accurate extraction of cells. Future
work should focus on the development of a texture
descriptor that will detect differences between the different
kinds of large cells.

4. CONCLUSIONS AND FUTURE WORK

A complete methodology was proposed m this paper for
detection of CBs i H&E stained microscopic images of FL.
The methodology addresses the special characteristics of the
images used and specifically, the transparency of the nuclei
due to the small thickness of tissue sections. Intensity
thresholding has been used for the segmentation of images
mto their cytological components. Additionally, Expectation
Maximization algorithm is being used for the separation of
touching cells. Candidate CBs are selected by using size,
shape and intensity histogram criteria. Finally, candidates
are classified into CBs and non-CBs by using a Linear
Discrimimant Analysis classifier. An average number of
82.58% of the annotated CBs was detected in three HPF
images. However, the algorithm also produces a large
number of false positives and future work should focus on
their elimmation by investigating textural differences
between CBs and large non-CB cells.
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